INTERNATIONAL JOURNAL OF

SOLIDS and
STRUCTURES

www.elsevier.com/locate/ijsolstr

PERGAMON International Journal of Solids and Structures 40 (2003) 19231941

Asymmetric problem of a row of revolutional
ellipsoidal cavities using singular integral equations

Nao-Aki Noda **, Nozomu Ogasawara ?, Tadatoshi Matsuo °

& Department of Mechanical Engineering, Kyusyu Institute of Technology, 1-1 Sensui-cho Tobata, Kitakyusyu 804-8550, Japan
b Department of Mechanical Engineering, Fukushima National College of Technology, Iwaki 970-8034, Japan

Received 4 April 2002; received in revised form 5 December 2002

Abstract

This paper deals with numerical solution of singular integral equations of the body force method in an interaction
problem of revolutional ellipsoidal cavities under asymmetric uniaxial tension. The problem is solved on the super-
position of two auxiliary loads; (i) biaxial tension and (ii) plane state of pure shear. These problems are formulated as a
system of singular integral equations with Cauchy-type singularities, where the unknowns are densities of body forces
distributed in the r, 0, z directions. In order to satisfy the boundary conditions along the ellipsoidal boundaries, eight
kinds of fundamental density functions proposed in our previous papers are applied. In the analysis, the number, shape,
and spacing of cavities are varied systematically; then the magnitude and position of the maximum stress are examined.
For any fixed shape and size of cavities, the maximum stress is shown to be linear with the reciprocal of squared number
of cavities. The present method is found to yield rapidly converging numerical results for various geometrical conditions
of cavities.
© 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

To evaluate the effect of defects on the strength of structures, it is important to analyze the stress
concentration problems of ellipsoidal cavities in infinite bodies under tension. In previous research, two
spherical cavities were treated by Sternberg and Sadowsky (1952), Eubanks (1965) and Miyamoto (1957);
two rigid inclusions were analyzed by Hill (1966), Shelly and Yu (1966) and Goree and Wilson (1967). In
addition, an infinite row of spherical cavities were solved by Atsumi (1960); an infinite row of ellipsoidal
cavities were treated by Nisitani (1963). Recently, the authors have also considered ellipsoidal cavities using
singular integral equations of the body force method (Noda and Matsuo, 1995b, 1996). This method can be
applied to the analysis for various shapes and spacing of cavities. However, all of those studies mentioned
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Nomenclature

a major radius of revolutional ellipsoidal cavity

b minor radius of revolutional ellipsoidal cavity

d spacing of cavities

(x,y,2), (r,0,z) rectangular and cylindrical coordinates

(&,n,0), (p, ¢, ) rectangular and cylindrical coordinates where body forces are distributed

v, angle specifying the point (r, 0, z)

/% angle between the r-axis and normal direction of ellipsoid in the plane 6 = 0

Ot angle specifying the point (p, ¢, ()

ol stress component due to a single ring force

K" singular kernel, which means, stress component due to two ring forces F, acting symmetrically

to the plane z =0
F, ring force distributed in the r-direction whose magnitude is proportional to cos2¢
F ring force distributed in the g-direction whose magnitude is proportional to sin 2¢
E ring force distributed in the z-direction whose magnitude is proportional to cos2¢
N number of cavities
M number of collocation points for each cavity

above are concerned with axisymmetric problems. Concerning axisymmetric cavities under asymmetric
loads, only two and three spherical cavities in an infinite body were analyzed by Tsuchida et al. (1976,
1978).

This paper deals with a row of revolutional ellipsoidal cavities in an infinite body under asymmetric
uniaxial load using singular integral equations of the body force method. Then, the interaction effects are
discussed with varying the shape and spacing of ellipsoidal cavities. The present method of analysis yields
the smooth variation of stress distribution along the boundaries.

2. Analysis method

Consider an infinite body under asymmetric uniaxial tension having ellipsoidal cavities as shown in Fig.
1(c). This problem is composed of the superposition of Problems 4 and B as shown in Fig. 1. Rectangular
and cylindrical coordinates (x,y,z) and (r, 0,z) are defined in Fig. 1. Here, (&,1,{) and (p, ¢, () are rect-
angular and cylindrical coordinates that specify the points where body forces are distributed. The problem
A can be analyzed by applying the method described in the preceding paper (Noda and Matsuo, 1996). In
this paper, therefore, the solution of the problem B will be mainly explained. The body force method is used
to formulate the problem as a system of singular integral equations. Then, the fundamental solutions are
stress fields K7 + K%, K=, K7 + K,!, K at an arbitrary point [r = acosy;, z =d +2d(i — 1) + bsiny,,
i=1,2,...,N/2] when two ring forces acting symmetrically to the plane z=0 [p=acoso,
(=x{d+2d(k—1)+bsinoy}, k=1,2,...,N/2]. The problem B is symmetric with respect to z = 0.
Therefore if we use the fundamental solution due to two ring forces instead of a single ring force, we can
consider the boundary condition only on z > 0. Here, each ring force has the magnitude proportional to
cos2¢ or sin2¢ along the circumference. The integral equations are expressed by Eq. (1), where the un-
knowns are densities of body force distributed along the prospective boundaries. p*(oy), pj(ow), o (o).
Here, equally spaced equal N ellipsoidal cavities shown in Fig. 2, where N is an even number, are assumed
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Fig. 1. Problem and coordinate system for two ellipsoidal cavities.

Fig. 2. A row of revolutional ellipsoidal cavities in an infinite body.

to explain the solution. The method also can be applied to the case when N is an odd number. The notation
o 1s the angle that specifies the points where body forces are distributed.
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<){Pr ) cos g + pL(Y;) Sin‘//fo}+2/ Ko (o4, ¥1,) py (o) ds
=1

N/2 N/2
/ K:},’ “ka PZ(O‘k) ds + Z / nn O(k7 Pz(ak)d
k=1

_ 00 2
= —0,° cos” Y, cos 20

(1)
1 N/2
(=3) (- srtmsinn +psosva) + Y [ Kitonvinicaas
k=1
N/2 /2 N/2
+ Z / Ko (o, ;) i (o) ds + Z / = (o, ) i (o) ds
k=1 J-n/2 k=1 J-m/2
= —0Xsiny,ycosy,cos20 i=1,2,...,N/2
where
—dp =asino;do,, d{ = bcoso doy 2)
ds = /a2 sin® o + b2 cos? oy doy

In Eq. (1), the singular kernels (K% + K% K% K 4+ K" K) denote normal stress o, and shear stress
1, appearing at the prospective boundary for cavities induced by two ring forces acting in the r, 0, z
directions along two circumferences. Here /,, is the angle between the r-axis and the normal direction of
ellipsoid at (7, z) in the plane 0 = 0. The notation ¢°° cos 20 stands for the stress field of pure shear at infinity
r — oo. Eq. (1) enforce boundary conditions at the imaginary boundary; that is, ¢, = 0 and t,, = 0. The
first terms of Eq. (1) represent the stress due to the body force distributed on “the minus boundary”
(Nisitani, 1967). “The minus boundary” (— boundary in Nisitani’s paper) means the imaginary boundary
composed of the internal points that are infinitesimally apart from the initial boundary. The second and
third terms of Eq. (1) include the singular terms having the singularity of the form 1/sin{(y, — o4)/2}. In
this case \; = o, i = k, the integration should be interpreted in Cauchy principal value sense. The unknown
functions in eqns p* (o), pj(o), pi(ou) are expressed by the following equations.

* dF,

pi()os26 =T
. . _dR

P (o) sin 2¢p = odods (3)
. _ —dE

P (o) cos 2¢p = pddds

where dF,, dFy, dF, are the components of the resultant of the body force in the r, 0, z directions acting on
the infinitesimal area pd¢ds, respectively.

In a similar way of the preceding paper (Noda and Matsuo, 1996), new fundamental density functions of
the body force in the r, 0, z directions w, (o), wo(o), w.(o) are defined by the following equations (Noda
and Matsuo, 1993, 1995a,b).
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w (o) = n,(ax)/ cosoy wia(oy) = n,.(oy) tan oy

W,.3(06k) = nr(ock) Wr4(06k) = I’lr(O(k) sin Ok

wor (o) = n.(o)/ cosay  waa(on) = n,(0y) tan oy, @)
W(.)3(O(k) = I’lr((Zk) W94(0Ck) = I’lr(OCk) sin Ok

W1 (Otk) = nz(ock)/cos Oy sz(OCk) = nz(ak)

was (o) = n (o) cotoy,  waa(oy) = n.(oy) cos oy

Here, n,(o), n.(o) are the r, z components (cos,,, siny,,) of the normal unit vector, respectively, at the
point (r,z). They are expressed by the following equations.

n (o) = n.(ox) =

b cos oy, asin oy

()

\/ a2 sin® o, + b2 cos? ock \/ a2 sin® oy + b2 cos? o

In the present analysis, the unknown functions of the body force densities for ellipsoidal cavities p*(oy),
05 (ou), pi(oy) can be expressed as a linear combination of the fundamental density functions defined by Eq.
(4) and the weight functions p,;(o), p,a(%), Po3(%%), Poa(ck)s 0.1 (), Po(o) as shown in the following Eq.
(6). These weight functions are symmetric with respect to the axis o = 90°, namely, the z-axis.

Py (o) = py3 (o) wia(ow) + 4 (o) wra (o)
(o) = pos (o) wos (o) + poa (o) woa (o) (6)
pL (o) = palo)wa(ow) + puy (o) wa (o)

Using the expressions in Eq. (6), the singular integral Eq. (1) is reduced to following Eq. (7).

(=3 ) 0000+ () inh) 05 i+ (a0 + pa)sinh s’ )]
N/2
/ K (o, W) {ps (o) + pra (o) sin oy }b cos oy doy

N/2
/ K0 (o, W)L pos (o) + poa() sin oy }b cos oy doy,

N/2 iy
+ Z / K (o, ) {22 (o) + poy (o) / sin oy basin oy doy = —0°° cos® i cos 20

k=1 J-7/2
(=3 )1 )+ pasin) + o) + pa ) sin )] sin iy cos @

N/2 /2

+ Z / K (o, W) {ps (o) + pra (o) sin o }b cos oy doy,
N/2

/ K50 (o, ) {pos (o) + poalou) sin oy }b cos oy doy

N/2 y

+> , Km (o, W) { oo (o) + 1 (o) / sim oty fa sim oy dog
=1 J-n

= —oXsiny, cosy,ycos20 i=1,2,...,N/2

In the analysis of plane state of pure shear as shown in Problem B of Fig. 1 it should be noted that the
magnitude of two types of body force densities p, and p, are always identical, that is, p* (o) = pj(a). In the
analysis of pure shear, therefore, the number of unknown is 2M, where M is the number of collocation
points. On the other hand, in the analysis of an axisymmetric body under bending, the number of unknown
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is 3M, instead of 2M (Murakami et al., 1986a,b) although both of those are similar problems of an axi-
symmetric body under the asymmetric loads.

In the present analysis, polynomials have been applied to approximate the unknown functions as
continuous functions. Now, from the symmetry to the axis o, = 90° of the problem, the following ex-
pression can be applied.

M)2 M2 M/2
Pra(o) = 2 amtn(o) | pos(ow) = Do crata(one) | Palot) = D erntn(o)
n=1 n=1 n=1
M/2 M/2 M2 (8)

Pralon) = Z::lbkntn([xk) Poa(ox) = ;dknfn(“k) o) = ;fkntn(“k)

Using the approximation method mentioned above, we obtain the following system of linear equations for
the determination of the coefficients a;,, by, Cin» din> €in» fin- The number of unknown coefficients is
3M x N /2. The convenient sets of the collocation points are given by Eq. (9).

T T . _
v, = (M)(z—o.s) — 2 i= L N2 I= 12 M 9)
N/2M )2
Z Z (aknAkn + bkann + Ckn Ckn + dknDkn + eknEkn + fknF}m) = _O-SO COSZ l,bio Ccos 20
k=ln=1
N/2M[2 (10)
> Ak Grn + binHin + Cndin + dindin + €iaKin + finLin) = —07° sin iy cos yry cos 20
k=1n=1
| N2 pm)
Apy = 1a(;) cos® Yy + Z I (e, ;) 4 K20 (o, ;) M (o) b €0 oy dogg (11)
2 k=1 —n/2

The stresses at an arbitrary point are represented by a linear combination of the coefficients ay,, by, Cin> dins
em»> fim and the influence coefficients corresponding to A, ~ L;,. Using the numerical solution mentioned
above we will obtain the stress concentration factors and stress distribution along the boundaries.

3. Fundamental solutions and evaluation of singular integrals

The singular kernel in Eqgs. (1) and (7), for example, K’7, can be expressed as follows. Here, K7 is a stress
component due to two ring forces F; acting symmetrically to the plane z = 0 in an infinite body. On the
other hand, notations ¢/, gy, 67, 77, 7% I’ denote stress components due to a single ring force F, acting in
an infinite body. Namely,

Kﬂfzﬂ’*Z(G cos? Y, + o sin’ y, + 277 sin y, cos ;)

) (12)
K% —Er = Y (6 — af) siny, cos i, + 277 (cos® y, — sin” ;)
¢

In a similar way, Krﬁ‘;, Ko, K’ K’ are defined. In Eq. (12) Zz means summation of stresses induced by two
ring forces, which is distributing symmetrically to the plane z =0 on the circumferences z = (. The
problem treated in this paper is symmetric with respect to z = 0. Therefore if we use K’7 as the meaning of
stress component due to two ring forces instead of a single ring force, we can consider the boundary
condition only on z > 0. Here, each ring force has distinct variation along the circumference, which is

proportional to cos 2¢ for F;, F,, and sin 2¢ for Fj. These stresses are obtained as follows by integrating the
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stress fields due to a point force acting in an infinite body in a similar way of the previous papers
(Murakami et al., 1986a; Nisitani and Noda, 1984). First, the stress at (r, 0, z) due to a point force in the -
direction acting at (p, ¢, () is expressed as Eq. (13).

o = B,[(1 — 2v)R*[—rcos(¢p — 0) + p{2cos*(¢p — 0) — 1}]

— 3R {rcos(¢ — 0) — p}{r — pcos(p — 0)}’] (13)
E
8n(l —v)’

2

B, = R* =1*+p* —2rpcos(p — 0) + (z— ()

Then, the stress at (r, 8) due to a ring force with intensity cos 2¢ acting at (p, {) is given in the following way
(see Nisitani and Noda, 1984).

2n 2n
o = / (@ — 0)|_ Fpcos2pde = / a7 (@' )F.pcos2(¢’ + 0)dg’
0 0

2n 2n
= a7 (¢')F.p(cos 2¢’ cos 20 — sin 2¢’' sin 20) d¢’ = " (¢')F.p cos 2¢' de' cos 20
0 0

3
= 2B, {(1 = 2v)(pho +rly —4pliy — 4rly3 +4phg) r_z{ — Pplsy +r( +2p7)Is, +

m

— p3[5,2 — }"(21”2 + 3p2)[5,3 + 2,0(2]"2 + p2)15,4 — 2}"p215,5}:| cos 20 (14)

1 [ cos™ ¢’
QD/ =¢ — 07 Inm - 7(!),1/2 d(,D/,
Tm Jo (e —cos¢@)

2 2 (15)
e:1+(’”—l’) + (-0 . re=\2p

Similar expressions of the Eqgs. (13)—(15) were derived by Noguchi et al. (1987) to analyze the problem of
semi-infinite body with a semi-ellipsoidal pit. As seen from the above expressions, the stresses due to three
types of ring forces vary along a circumference in the form of cos 20 or sin 20. These variations are identical
with the ones of ¢, and 1,,, respectively, which is induced by pure shear stress at » — oo. Therefore, if the
boundary conditions are satisfied at an arbitrary point along the circumference on the ellipsoidal boundary
by adjusting the body forces, the boundary conditions are automatically satisfied along the whole cir-
cumference. Consequently the present method does not require the division along the circumference and the
problem can be treated with high accuracy with a comparatively small number of unknowns. When the
body force acts on a collocation point, the integration becomes singular. In this case the direct integration is
performed for the range o, = W — &y ~ y + &. Then, the integrands can be regarded as the product of three
parts: (1) the fundamental solution, (2) the fundamental density functions, and (3) the weight functions;
and, all of these are expressed as power series. As an example, the stress ¢ is derived in the following way.

£

= [ P B(1—2v)(plso + 1Ty — 4plis — 4rLss + 4pl

a,. /_80 dn(l— ( v)(pho + 113, L3, rl3 +4pli,)
3

+ }"_2{ — }"sz5‘0 —+ r(rz + 2,02)1511 — p3[5‘2 — }’(2}"2 —+ 3p2)15'3 + 2,0(2}"2 —+ p2)15=4 — 2?',0215‘5} w,*,(ock)tn(ack)de

(16)

Here, the following relations can be applied (Noda, 1984).
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p_r<1+eﬁsint//l.~~>
7,

i

1
—p :aasmu//i(l +§scotlpi...>

T 22 1 1\,
_ _ _ 1/2 _ Z BRI I 7o
K1—1_170—/0 (6 COSQD) dq) k { 2(1 2)/( }
" 1 . (17)
SRR N YUY (R
P /o(e—cos.qo)l/2 ¢ K4\ K
B 2 ;&
e+ 1 T
e:1+R_§82+(a — b?) siny, cosy, +(a/r)s1n1pR
2r 2r2

2 _ 22 2 Q2
Ry = a”sin™ Y, + b” cos” i,

By substituting Eq. (17) into (16), we have

o — / 1 { { (1-2vasiny, 2 sin’ y, } /(8
" 4n(1 — R? R?
—& ‘II( V) 0 0

N (1 —2v)asiny, { _ asiny, | oot Y (@’ = b%)siny;cosy, }

R? 2r 2 R?
N 243 sin’ i, asiny, N 3coty, 2(a*— b*)siny;cosy;
R} 2r 2 R}
1 asin’y,  (1-2v) 8r .
+W+ e ~ 30, {161 —45In (RUE)}]W,,(ock)t,,(ock)de. (18)

Next, the fundamental density functions and the weight functions are expressed in the form of power
series of ¢ as shown in the following equation.

wis(oy) 2 p,beos (1 — etanyy,)
wr() = {wﬂ;(ock) = p beosy;(1 — etanyy;) siny, (1 + ecoty;)
)

. wos (o) =2 ppbcos iy, (1 —etanyy,)
wolu) = woa (o) =2 pobcosiy, (1 —etanyy,) siny, (1 + ecot ;) (19)
was (o) = p, smzp(l—ecotw)
Wi ={ "
wa(oy) =2 p
to(o) = cos{2(n — Doy} = cos{2(n — 1)y;} (20)
By using the Egs. (16)—(20), the integrand is expressed as
fe) = C—_-i- Co+Dolne| +&(C; + Dy Inle|) +&*{Cy + Dy(In|e| — 1)} + (21)

Then, the expressions of direct integrations in the range o, =y — & ~ y + & can be obtained in the fol-
lowing way. First, for the term of 1/e, the integration should be interpreted as the meaning of Cauchy’s
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principal values. Second, the terms above & can be disregarded if we take ¢ small enough. Therefore, the
integral of Eq. (21) is expressed as Eq. (22).

&) &)
o’ :/ f(s)ds%/ (Co+ Dylne])de = 2{Cy + Dy(Ingy — 1) } & (22)
—&) —&)

4. Results and discussion for two ellipsoidal cavities

In this section, first, the results of two ellipsoidal cavities in Fig. 1 will be shown. Table 1 shows con-
vergency of the stresses at points 4 (y = —90°) and B (¥ = 90°) with increasing the collocation number M
whena/b=1/4,b/d =2/3,6> =1,v=0.31in Fig. 1. The present results have shown good convergency to
the fifth digit when M = 20. Table 2 shows the magnitude and position of the maximum stress, and the
magnitude of stresses at points 4 (y = —90°) and B (y = 90°) for two spherical cavities when a/b = 1.0,
6* =1,v=0.3witha/d =0 ~ 0.9 in Fig. 1. The results of Tsuchida et al. (1976) are also shown in Table 2.
The present and Tsuchida’s results coincide with each other to the fourth significant digit in most cases.

Fig. 3 shows stress distribution along the boundaries of the problems 4, B, C in Fig. 1 when a/b =1/4
with 5/d = 0.9, and Fig. 4 shows the one when a/b = 1/8 with b/d = 0.9. Both figures also show the results
of a single cavity corresponding to b/d = 0. Figs. 5 and 6 show stress distribution when b/d = 0 and
b/d = 0.9, respectively, along the boundaries of the problem C with varying a/b = 2.0, 1.0, 1/2, 1/4, 1/8.

Table 1
Convergency of stress oy,_,, at points 4 and B (N =2, a/b=1/4, b/d =2/3,v=10.3)
Y (deg) M Problem 4 Problem B Problem C
-90 12 2.7004 2.6736 2.6870
16 2.7000 2.6736 2.6868
20 2.6996 2.6736 2.6866
24 2.6996 2.6736 2.6866
90 12 2.6476 2.6571 2.6523
16 2.6500 2.6571 2.6536
20 2.6484 2.6570 2.6527
24 2.6484 2.6571 2.6527
Table 2
Stress concentration factor of two spherical cavities (a/b = 1.0)
a/d 0 ) max Kii Kip
(deg) Kf max
0 —90 to 90 (-90 to 90) 2.0455 (2.045) 2.0455 (2.045) 2.0455 (2.045)
0.1 -2 (0) 2.0455 (2.046) 2.0454 (2.045) 2.0454 (2.045)
0.2 -10 (-10) 2.0462 (2.046) 2.0448 (2.045) 2.0454 (2.045)
0.3 ~14 (-15) 2.0481 (2.048) 2.0427 (2.043) 2.0456 (2.046)
0.4 —17 (-20) 2.0521 (2.052) 2.0378 (2.038) 2.0464 (2.046)
0.5 —24 (=25) 2.0598 (2.060) 2.0307 (2.031) 2.0481 (2.048)
0.6 -31 (-30) 2.0742 (2.074) 2.0295 (2.029) 2.0512 (2.051)
0.7 —41 2.1022 2.0655 2.0561
0.8 =90 (-90) 2.2295 (2.230) 2.2295 (2.230) 2.0624 (2.062)
0.9 =90 2.7724 2.7724 2.0713

Results of Tsuchida et al. (1976) in paranthesis.
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As shown in Fig. 5, the results when b/d = 0 approach the one of a circular hole in an infinite plate except
the range near y = £90° when a/b — 0. Namely, the values of ay/6™ of problem A4, B, C approach the ones
of a circular hole under biaxial tension (K, = 2), pure shear (K, = 4), and uniaxial tension (K, = 3), res-
pectively.

Figs. 7-11 show stress distribution along the boundaries of problem C when a/b =2.0,1.0,1/2,1/4,1/8
with b/d =0, 1/3,1/2,2/3,0.8, 0.9. Tsuchida’s results (1976) of a/b = 1.0 coincide with the present results
very well. As a result of comparison among Figs. 7-11, it is found that the position and magnitude of
maximum stress varies depending on a/b and b/d. When a/b is close to unity, the interaction appears near
the inside of two cavities as an increase of stress. On the other hand, as a/b — 0 (b — o0), the interaction
appears depending on the location of the boundary as an increase or decrease of stress, which is in a
different way of the one of a/b = 1. The present method is found to yield the accurate value of g, max,
whose position varies slightly depending on a/b and b/d. If the interaction is small when b/d < 1/2, the
variation of g, is not very large (see Figs. 5,7-11). However, if 5/d — 1 and the interaction becomes larger,
the variation of g becomes complicated especially for the extreme cases of a/b — 0.

The magnitude and position of maximum stress of two ellipsoidal cavities are shown in Table 3 when
a/b=2.0,1.0,1/2,1/4,1/8,1/50 with b/d =0, 1/3, 1/2,2/3, 0.8, 0.9. As shown in Table 3, the present
results have good convergency to the fifth digit. In this analysis exact body force density to make a single
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Fig. 7. Distribution of stress in Fig. 1(c) (N =2, a/b=2.0, 0 = /2).
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Fig. 8. Distribution of stress in Fig. 1(c) (N =2, a/b = 1.0, 0 = n/2).
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Fig. 9. Distribution of stress in Fig. 1(c) (N =2, a/b=1/2, 0 = 1/2).
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Fig. 10. Distribution of stress in Fig. 1(c) (N =2, a/b=1/4, 0 = n/2).
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Fig. 11. Distribution of stress in Fig. 1(c) (N =2, a/b=1/8, 0 = 1/2).

Table 3
Magnitude and position of the maximum stress of two ellipsoidal cavities in Fig. 1
b/d  alb
2.0 1.0 1/2 1/4 1/8 1/50
(deg) Kl max (deg) KI max (deg) Kf max (deg) Kt max (deg) KI max (deg) KI max
0 +90 1.6601 90 to 90  2.0455 0 2.4804 0 2.7772 0 2.9199 0 3.0226
1/3 90 1.6605 -14 2.0491 -1 24814 -13 2.7780 5 2.9202 -
1/2 =35 1.6747 =24 2.0598 -7 24844 31 2.7859 12 2.9219 -
2/3 -90 1.8208 37 2.0905 -24 24938 =37 2.8223 16 2.9281 -
0.8 -90 2.1705  -90 22295 47 2.5240  -40 29255 =56 2.9477 -
0.9 -90 2.7754 =90 2.7724 =72 2.6363 42 3.2074 -59 3.0044 -90 3.1218

ellipsoidal cavity of revolution is used. Therefore the method of analysis can be applied to the case for more
extreme value of a/b and also to the case b/d — 1.

5. Results and discussion for a row of ellipsoidal cavities

Table 4 shows convergency of the stresses at points 4 (y =90°, j=1) and B ( = -90°, j = 1),
C (y =90°, j = 2) of three spherical cavities in a body under biaxial, pure shear and uniaxial tension with
increasing the collocation number M when N =3, a/b=1.0, b/d = 0.9, 6= =1, v = 0.3. The present re-
sults have good convergency to the fifth digits when M = 24. Table 5 shows the magnitude and position of
the maximum stress, and the stresses at the points 4, B, C of three spherical cavities in comparison with the
results of Tsuchida et al. (1978) when N =3, a/b = 1.0, 6> =1, v = 0.3 with a/d = 0 ~ 0.9. The present
results and Tsuchida’s results coincide with each other to the fourth significant digits in most cases.

Fig. 12 shows the relationship between K, ., and 1/N? when a/b = 1.0 with b/d =1/3,1/2,2/3, 0.8,
and Fig. 13 shows the one when a/b = 1/4 with b/d = 1/3, 1/2, 2/3, 0.8. Recently, Isida and Igawa (1994)
have shown the linear relationship between K, ,.x and 1/N for a row of elliptical holes (2D problem);
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Table 4
Convergency of stresses at points 4 and B, C concentration factor ay|y_,/,/0> of three spherical cavities (N = 3, a/b = 1.0, b/d = 0.9,
v=20.3)
Y (deg) M Biaxial Pure shear Uniaxial
j=1
-90 12 2.8300 2.7800 2.8050
16 2.8300 2.7800 2.8050
20 2.8300 2.7800 2.8050
24 2.8300 2.7800 2.8050
90 12 2.2000 1.9500 2.0750
16 2.2000 1.9500 2.0750
20 2.2000 1.9500 2.0750
24 2.2000 1.9500 2.0750
j=2
90 12 2.8400 2.7800 2.8100
16 2.8400 2.7800 2.8100
20 2.8400 2.7800 2.8100
24 2.8400 2.7800 2.8100
Table 5
Stress concentration factors of three spherical cavities (N = 3, a/b = 1.0)
a/d  j=1 Jj=2
l// (deg) K[ max KIA KIB l// (deg) K[ max KIC
0 —90 to 90  2.0455 (2.045)  2.0455 (2.045)  2.0455(2.045)  —90-90 (-90-90)  2.0455 (2.045)  2.0455 (2.045)
(=90 to 90)
0.1 -10 2.0455 2.0455 2.0453 0 2.0455 2.0454
0.2 —10 (-=10)  2.0463 (2.046)  2.0455 (2.045)  2.0446 (2.045) 0 (0) 2.0468 (2.047)  2.0447 (2.045)
0.3 -15 2.0486 2.0456 2.0425 0 2.0503 2.0428
0.4 —15(=15)  2.0530 (2.053)  2.0453 (2.046)  2.0375 (2.038) 0 (0) 2.0571 (2.057)  2.0388 (2.039)
0.5 -23 2.0612 2.0484 2.0307 0 2.0687 2.0336
0.6 =31 (=30)  2.0769 (2.077)  2.0516 (2.052)  2.0308 (2.031)  £15(£15) 2.0871 (2.087)  2.0361 (2.036)
0.7 —41 2.1067 2.0575 2.0702 +36 2.1188 2.0779
0.8 -90 (-90)  2.2413 (2.241)  2.0651 (2.065)  2.2413 (2.241)  £90 (£90) 2.2508 (2.251)  2.2508 (2.251)
0.9 =90 2.8050 2.0750 2.8050 +90 2.8100 2.8100

Results of Tsuchida et al. (1978) in paranthesis.
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Fig. 12. Relationship between K, ., and 1/N? in a row of elliptical cavities (a/b = 1.0, 0 = 1/2).
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however, for a row of elliptical cavities (3D problem) we have a linear relationship between K; . and 1/N2.
Those relationships are related to the fact that each cavity can be replaced by the distribution of self-
equilibrating body forces. By using the linear relationship, the magnitudes and positions of the maximum
stresses are shown in Table 6 when N — oo, a/b = 2.0, 1.0, 1/2 and 1/4 with b/d =0, 1/3, 1/2,2/3, 0.8,

Table 6

Extrapolated stress concentration factors of an infinite row of elliptical cavities (N — o)

alb b/d Outermost cavity (j = 1) Central cavity (j = (N +1)/2)
l// (deg) Kt max KIA KIB ‘// (deg) Kt max KIC

2 0 +90 1.660 1.660 1.660 +90 1.660 1.660
1/3 90 1.660 1.660 1.648 +35 1.652 1.643
1/2 =30 1.679 1.673 1.656 +19 1.695 1.669
2/3 -90 1.844 1.691 1.844 +90 1.885 1.885
0.8 -90 2.235 1.717 2.235 +90 2.322 2.322
0.9 -90 2.894 1.745 2.894 +90 3.037 3.037

1 0 -90 to 90 2.046 2.046 2.046 —-90 to 90 2.046 2.046
1/3 -10 2.050 2.048 2.043 0 2.053 2.042
1/2 =25 2.062 2.048 2.032 0 2.073 2.035
2/3 =35 2.096 2.056 2.052 +25 2.117 2.065
0.8 -90 2.244 2.068 2.244 +90 2.273 2.273
0.9 -90 2.812 2.079 2.812 +90 2.863 2.863

1/2 0 0 2.480 2.417 2.417 0 2.480 2.417
1/3 -1 2.481 2.418 2.417 0 2.483 2.418
1/2 -6 2.485 2.420 2.416 0 2.490 2.417
2/3 =24 2.496 2.429 2.418 0 2.504 2421
0.8 —47 2.526 2.413 2.445 +44 2.533 2.449
0.9 =73 2.646 2.423 2.641 +74 2.642 2.641

1/4 0 0 2.777 2.659 2.659 0 2.777 2.659
1/3 -19 2.780 2.654 2.655 0 2.777 2.656
1/2 -33 2.789 2.625 2.635 0 2.780 2.668
2/3 =37 2.825 2.655 2.675 +10 2.784 2.659
0.8 —43 2.925 2.616 2.651 +39 2.793 2.676
0.9 -42 3.151 2.545 2.809 +62 2.819 2.714
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0.9. In Table 6 the stresses at the points 4, B (¥ = £90°) on the outermost cavities (j = 1) and the stress at
the point C ( = +90°) on the central cavities (j = (N + 1)/2) are tabulated. In most cases in Table 6, the
maximum stress occurs at the central cavity except for three case: (1) a/b=2.0 and b/d =1/3, (2)
a/b=1/2and b/d =0.9, (3) a/b = 1/4.

Fig. 14 shows stress distribution along the boundaries of ellipsoidal cavities j =1, 2, 3 when N =5,
a/b=1.0,b/d = 0.8, and Fig. 15 shows the one when a/b = 1/4, b/d = 0.8. Fig. 16 shows the magnitude
and position of the maximum stress at each cavity with varying the number of cavities N = 2-8 when
a/b=1.0,b/d = 0.8, and Fig. 17 shows the one when a/b = 1/4, b/d = 0.8. From Figs. 14-17, it is found
that the stress distributions along each cavity are similar to each other except for the one of the outermost
cavity. The maximum stress is found to appear at the outermost or central cavity depending on a/b and
b/d. Fig. 18 shows the stress distribution along the boundaries of the central and outermost ellipsoidal
cavities when a/b = 1.0, b/d = 2/3 with varying the number of cavities N.
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Fig. 14. Distribution of stress g, in five spherical cavities (N = 5, a/b = 1.0, b/d = 0.8, 0 = 1/2).
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Fig. 15. Distribution of stress g, in five elliptical cavities (N =5, a/b =1/4, b/d = 0.8, 0 = 1/2).
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Fig. 16. Variation of K, .y of infinite body containing a row of ellipsoidal cavities (a/b = 1.0, b/d = 0.8, 0 = 1/2).
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6. Conclusion

In this study, by using a system of singular integral equations of the body force method, a row of
revolutional ellipsoidal cavities in an infinite body under asymmetric uniaxial tension are considered. The
conclusion can be made as follows:

(1) The problem is solved on the superposition of two auxiliary loads; (i) biaxial tension and (ii) plane state
of pure shear. These problems are formulated as a system of singular integral equation with Cauchy-
type singularities, where the densities of body forces distributed in the r, 0, z directions are unknown
functions. In order to satisfy the boundary conditions along the ellipsoidal boundaries, eight kinds
of fundamental density functions proposed in our previous paper are applied. The present method is
found to give rapidly converging numerical results for stress distribution along the boundaries.

(2) For two and three spheroidal cavities, the results of the present analysis and the ones of Tsuchida et al.
are in good agreement.

(3) For a row of elliptical cavities, it is found that the maximum stress concentration K n,, is nearly pro-
portional to 1/N?, where N is the number of cavities. The maximum stress is found to appear at the
outermost or central cavity depending on the shape and spacing of cavities.

(4) The magnitudes and positions of the maximum stresses are tabulated for various shape and distance of
cavities for N = 2 and N — oo. The stress distribution along the boundaries are shown for various geo-
metrical conditions.
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